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As it is clear, one of the most challenging issues in the beams and spherical vessels are the 

creeps, which can have significant effects in temperature-dependent tests. This parameter is 

highly dependent on temperature and stress factors. It can be illustrated that we would use 

an analytical method and linearizing general creep equation namely Norton’s law to extract 

relative constants (n, B) according to results and getting creep amount in a spherical pressure 

vessel in a non-autofrettage and then in an autofrettage mode by putting mentioned constants 

in non autofrettage and autofrettage stresses formula. It should be noted that the stress 

formulas in autofrettage mode are obtained by the linearization stress-strain curve in both 

elastic and plastic sections. The effects of autofrettage process in the entire spherical 

pressure vessel are observed at various pressures and temperatures, which can be seen in the 

following article. It can be concluded that applying the autofrettage process in the super-

alloyed nickel thick-walled spherical vessel, reduces the creep amount by at least 10 times 

in the internal radius and 10000 times in the external radius of the vessel. By comparing 

creep values, we can observe that the autofrettage of spherical vessels is a very practical 

process in the prevention and immunization of thick-walled spherical vessels so that it can 

control or eliminate destructive actions such as creep. 

Nomenclature  

r: Radius of spherical vessel                                                         ro: External radius of the vessel 

ri: Internal Radius of vessel                                                          rc: Loading first yield radius of the vessel 

𝑇𝑟𝑖
: Internal radius temperature of vessel                                     𝑇𝑟𝑜

: External radius temperature of the vessel 

E: Modulus of elasticity                                                               Et: Tangent modulus (loading state) 

Etu: Tangent modulus (unloading state)                                       Ep: Plastic modulus 

v: Poison’s ratio                                                                            α: Coefficient of thermal expansion 

𝑣𝑒: Equivalent poison’s ratio                                                       𝜎𝑦: Loading yield stress in tension  

𝜎′𝑦: Unloading yield stress in compression                                 𝑢:̇  Derivation of displacement with respect to time  

𝜀:̇ The secondary, steady-state or minimum creep rate                𝜎: The stress tolerated in the corresponding spherical vessel 

𝜎𝑒: The equivalent stress (the Von Mises stress)                          A: A constant value proportional to the material property 

Qc: The creep initial activation energy                                          T: The test temperature value in on ciliates 

n: The constant value (dependent on the material properties)      R: Ideal gas constant number of 8.314[27] 

𝜀�̇�: Radial strain rate                                                                      𝜀�̇�: Equivalent strain rate 

𝜀𝑟
𝑝

: The plastic radial strain                                                           𝜀𝜃
𝑝

: The plastic circumferential strain 

𝜀𝑒
𝑝

: The plastic equivalent strain                                                    𝜎𝑟𝑎𝑢𝑡
: The autofrettage radial stress  

𝜎𝜃𝑎𝑢𝑡
: The autofrettage circumferential stress                              𝜎𝑟𝑛𝑜𝑟

: The non-autofrettage radial stress  

𝜎𝜃𝑛𝑜𝑟
: The non-autofrettage circumferential stress  

𝜎𝑟
∗: The ratio of radial stress in two states of the normal and autofrettage 

𝜎𝜃
∗: The ratio of circumferential stress in two states of the normal and autofrettage 
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1. Introduction 

The spherical pressure vessels are one of the most important 

tools in engineering equipment, which have numerous 

applications. In the lifetime of spherical pressure vessels, there 

may be some flaws due to reasons such as corrosion, external 

object handling, fatigue loading, etc. Among these, the creep, 

or the strain rate, in the long run, can cause distortion, cracking 

or even failure. To solve this problem various solutions are 

presented. One way to reduce the creep is using the 

autofrettage process. The autofrettage process is achieved by 

thermal stresses. Autofrettage is known to induce residual 

stresses in the spherical vessels through exerting an initial 

pressure in a way that a part of the inner wall of the vessel 

enters into the plastic region. Through entering the vessels into 

the plastic area, the internal wall of vessel Getting into 

permanent deformation, after the autofrettage and unloading 

process, the plastic area does not tend to return to its original 

state, while the external part of the spherical vessels is in the 

elastic region, and pushes the inner area back to its original 

state. This causes tension in the spherical vessels. The created 

residual tension in the spherical vessels through autofrettage 

process is very important, which increases the pressure tolerate 

capacity of the spherical vessels and fatigue life, as well as the 

reduction of cracking and growth and decreases creep within 

it. Creep analysis in thick-walled spherical vessels is one of the 

most up-to-date and highly controversial issues in mechanic 

knowledge. In general, Inconel is a family of austenitic nickel-

chromium-based super alloys. Inconel alloys are oxidation-

corrosion-resistant materials well suited for service in extreme 

environments subjected to pressure and heat. When heated, 

Inconel forms a thick, stable, passivating oxide layer 

protecting the surface from further attack [1] .  

Bhatnagar et al [2] calculated the creep stress and strain in 

the orthotropic thick-walled pressure vessels. Miller [3] offers 

a solution to stress and displacements in thick-walled spherical 

shells under radial and creep changes. Nayebi and Ali-abbadi 

[4] investigated the plastic cycle and creep behavior in thick-

walled spherical vessels under pressure and temperature. 

Among these, the sphere, which has a thick-walled type and 

the nickel super alloy, is nickel called Inconel 100, and the 

thickness ratio to its radius is 0.375.  

Through the results and data of the same kind in the creep 

experiments of the University of Swansea [5] on a beam, we 

can obtain some of the requirements for creep tests in spherical 

vessels. L. H. You and H. Ou [6] determine creep deformations 

and stresses in thick-walled spherical vessels with varying 

creep properties subjected to internal pressure. Parker[7] 

proposed an autofrettage process in open-end tubes. 

Paolo Livieri and Paolo Lazzarin [8] provided a report of 

analysis of the appropriate analytical solutions for tension 

stresses in the autofrettage cylindrical vessels and the effect of 

residual stress in both the hardening and stress-strain curve 

forms. Thumse. Bergmann and Vormwald [9] did calculations 

of the residual stresses due to autofrettage process and the 

result of increasing the strength limit and they showed the 

large plastic penetration due to bending and the autofrettage 

process can reduce the stresses to a lesser extent than the yield 

stress in tension and pressure on both sides. In its method, 

Parker [10] provides an autofrettage model presented with 

regard to the strain relations and the Bauschinger effect based 

on stress-strain curve, tensile stress, material strain, and 

modified stress tolerance criterion. X. P Huang & W. C. Cui 

[11] showed an autofrettage model considering the material 

strain-hardening relationship and the Bauschinger effect, 

based on the actual tensile.  

Parker and Huan [12] through numerical method solved the 

same problems for spherical vessels and steel thickener, 

creating an equivalent numerical solution for spherical vessels. 

In the elastic range, thermal stresses for spherical and 

cylindrical tanks are presented in [13-17]. In the other research 

[18], the behavior of spherical and cylindrical vessels under 

thermal and mechanical loads, a precise solution was used for 

the distribution of stress in thick-wall vessels. Through the 

fully elastic-plastic generator and stable conditions, 

temperature changes are obtained in a radial direction. 

Spherical vessels have been studied for different combinations 

of temperature, pressure and the ratio of the different radius in 

[19, 20]. The elastoplastic thermal stress is studied in spherical 

vessels under temperature variations around the wall 

thickness. Kargarnovin and co-workers [21] optimized the 

wall thickness in the thick-walled spherical vessels of the 

spherical shell through the concept of thermo-elastoplastic. 

Davoudi Kashkoli and co-workers [22] assumed that the 

thermo-elastic creep response of the material is governed by 

Norton’s law and material properties, except Poisson’s ratio, 

are considered as a function of the radius of the spherical 

vessel, and an analytical solution is presented for calculation 

of stresses and displacements of axisymmetric FGM thick-

walled spherical pressure vessels.  

In the study of Gharechaei and loghman [23], time 

dependent stress and strain’s redistribution of FGM spherical 

vessel and also homogeneous autofrettage spherical vessels 

has been investigated. This vessel is such considered that 

internal pressure in it is beyond the critical pressure and in 

result of internal pressure and temperature distribution some 

part of internal thickness of sphere will be plastically 

deformed. Thermo-elastic-plastic stresses are then developed 

in the vessel which is subject to change with time due to creep 

phenomenon. The loghman research [24] describes an 

analytical–numerical model developed for non-stationary 

electro-thermo-mechanical creep response of a smart sphere 

made of polyvinylidene fluoride (PVDF) using Burgers’ creep 

model. The piezoelectric properties of the PVDF are used to 

control creep deformation of the sphere. Time-dependent 

stresses, displacements, electric potential and strains are 

calculated using Mendelson’s method of successive 

approximation. 

Time-dependent stress and deformation redistribution 

analysis of thick–walled spherical pressure vessels of FGM 

investigated [25]. Also, mechanical properties except poison 

ratio are considered to be the power function of the radial 

direction. In time dependent creep analysis, the total strain is a 

sum of mechanical, creep and temperature strains and these 

strains are functions of time and loading conditions. Liu and 

Shen [26] present analysis and experimental research on an 

autofrettaged pressure vessel with a cone and cylinder 

connection. Non-linear loading stresses and strains and the 

unloading resudial stresses and strains are considered. The 

residual stress and strain fields are obtained by the non-linear 

axisymmetric boundary element method (BEM). 
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 In this research, an analytical analysis is performed, so at 

first, we consider a spherical vessel with arbitrary radius, and 

then the temperature-dependent parameters are obtained with 

linearizing the creeping equations (Norton), so that the 

general/total creep in the non-autofrettage mode in the cylinder 

spherical vessels is obtained. The creep problem can be 

proposed to provide an autofrettage mode. In order to obtain 

this result, we need to calculate the creep in the autofrettage 

mode in the spherical pressure vessel. This implies the 

elasticity modulus and the fact the shear modulus is stable 

Inconel alloys are oxidation-corrosion-resistant materials well 

suited for service in extreme environments subjected to 

pressure and heat. When heated, Inconel forms a thick, stable, 

passivating oxide layer protecting the surface from further 

attack [27-31]. In general, differences between this article and 

others are that we use rare superalloy that has never used in 

vessels and after that check the influences of autofrettage 

process on creep of the vessel and comparison amount of creep 

between normal and autofrettage mode. 

2. Material Specification and Modeling 

The material is considered a special nickel (super alloy) 

named Inconel 100, the composition percentage of the 

elements is as follows (Table 1).  

Table 1. Inconel 100 Super Alloy Ingredients [32] 

Cr   Co   Ti    Al   Mo   V   C     Zr       B      Ni 

15   10    5.5   4.5    3     1   0.18  0.06  0.01   Bal. 

Also, thick-walled pressure spherical vessel with inner and 

external radius 50 and 80 (cm) illustrated in Figure 1. Also, 

Inconel 100 Super alloy strain-stress curve is shown in Figure 

2. 

 

Figure 1. Thick-walled pressure spherical vessel with inner and 

external radii 50 and 80 (cm) 

 

Figure 2. Inconel 100 Super alloy strain-stress curve [32] 

3. Problem Solving 

Norton equation is a basis for all the creep equations that 

gives us a non-linear relationship related to the temperature 

and stress in beams or vessels test. Norton's general equation 

can be seen in (1): 

ε̇ = 𝐴𝜎𝑛 exp (
−𝑄𝑐

𝑅𝑇⁄ )                                                (1) 

where it can be seen, 𝜀̇ shows the secondary, steady-state or 

minimum creep rate, and σ is provided as the stress tolerated 

in the corresponding spherical vessels or beam. In addition, A 

is a constant value proportional to the material; Qc is the creep 

initial activation energy, T is the test temperature value in on 

ciliates, n is the constant value, which is dependent on the 

properties of the material and R is ideal gas constant number 

of 8.314 [33], which is the molecular movement value at the 

desired temperature on Celsius. To simplify the equation, it is 

assumed that:  

𝐵 = 𝐴 exp (
−𝑄𝑐

𝑅𝑇⁄ )                                                         (2) 

So, the Norton creeping equation is simplified as 

following: 

ε̇ = B(𝑟)𝜎𝑛(𝑟)                                                                             (3) 

Due to the internal pressure, the creep variations in the 

spherical thick-wall pressurized vessels in the steady state are 

symmetric. The geometric relationship between radial and 

circumferential strain rates with radial displacement rate is 

expressed as the Eq. (4-1). Also, it is shown in the following 

the relationship between the radial and circumferential strain 

rates with stresses for an isotropic unstable material (Eq. (4-

2)). 

𝜀�̇� =
𝑑�̇�

𝑑𝑟
=

�̇�𝑒

𝜎𝑒
[𝜎𝑟 − 0.5(𝜎𝜃 + 𝜎𝜑)]                                  (4-1) 

𝜀�̇� =
𝑑�̇�

𝑑𝑟
=

�̇�𝑒

𝜎𝑒
[𝜎𝜃 − 0.5(𝜎𝑟 + 𝜎𝜑)]                                 (4-2)  
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where, 𝜀�̇� is the secondary, steady-state or minimum creep rate 

in Table 2, 𝜎𝑒, equivalent stress and 𝜎𝑟   ، 𝜎𝜃   ، 𝜎𝜑 are radial, 

longitudinal and transverse stresses, respectively. Due to 

symmetric of the sphere, circumferential stress replaced by 

transverse and longitudinal stresses, therefore, using Eqs. (4) 

and 𝜎𝜃 = 𝜎𝜑, result as following:  

Table 2. Data obtained in different temperatures and tensions [5]. 

Stress     Temp          Minimum            Rapture             Rupture 

(MPa)      (o C)          creep rate           time (103s)      Strain (*10-1) 

   𝝈𝒆                           �̇�𝒆 (10-9 s-1)                        

  0.2640 

  0.2481 

  0.2286 

  0.5050 

  0.2024 

  0.5056 

  0.3611 

  0.4612 

  0.4076 

  0.2123 

  0.3671 

  0.3748 

  0.5551 

  0.5714 

  0.6047 

  0.4035 

  0.4673 

  0.5099 

  0.3720 

  0.3909 

  0.4515 

  0.7029 

  0.8009 

  0.4010 

  0.7029 

      9671.9 

      5444.9 

      4374.0 

      4301.7 

      2391.8 

      3012.1 

      2343.1 

      1029.9 

      855.16 

      313.83 

      967.62 

      4986.4 

      2084.0 

      1142.7 

      1125.4 

      1464.2 

      466.36 

      305.91 

      76.75 

      27.692 

      2008.4 

      463.96 

      95.547 

      30.427 

      219.06 

     1.19 

     2.25 

     2.79 

     5.80 

     6.59 

     5.37 

     7.78 

     20.6 

     30.2 

     53.2 

     19.7 

     2.40 

     6.15 

     16.6 

     15.5 

     9.85 

     49.6 

     84.1 

     377 

    1150 

    4.23 

    38.6 

    298 

    839 

    120 

800 

 

 

 

 

850 

 

 

 

 

 

900 

 

 

 

 

 

 

 

 

950 

 

 

 

 

350 

375 

400 

425 

450 

300 

325 

350 

375 

400 

400 

200 

225 

250 

250 

275 

300 

325 

350 

400 

150 

200 

250 

300 

200 

The variation of UTS value versus temperature is shown in 

Table 3. Also, Mean Coefficient of Inconel 100 at different 

temperatures illustrated in Table 4. 

Table 3. The variation of UTS value versus temperature [5] 

Temperature (OC)       800          850          900     950 

 UTS (MPa)                 1000        887          773      660 

Table 4. Mean Coefficient of Inconel 100 at different temperatures 

[32] 

   Temp                   Temp                    Mean Coefficient 
                    oC                         oF                          per oC (*10-4) 

0.1296 

0.1296 

0.1314 

0.1350 

0.1386 

0.1440 

0.1496 

0.1584 

0.1674 

0.1800 

 21.11- 93.33 

21.11-204.44 

21.11-315.55 

21.11-426.66 

21.11-537.77 

21.11-648.88 

21.11-760 

21.11-871.11 

21.11-982.22 

21.11-1093.33 

70-200 

70-400 

70-600 

70-800 

70-1000 

70-1200 

70-1400 

70-1600 

70-1800 

70-2000 

Specifications of Inconel 100  are considered acording to 

Table 5. 

 

 

Table 5. Specification of Inconel 100 [32] 

      Temp          Yield Strength    Tensile Strength Elo      Reduction  

   oC            oF      of 0.2% (MPa)          (MPa)           %          of 

Area        

11.0 

11.0 

7.0 

7.2 

7.2 

7.2 

8.0 

9.0 

9.0 

6.0 

6.5 

6.0 

6.0 

6.0 

1013.52 

1089.37 

1110.05 

1096.26 

992.84 

737.73 

441.26 

848.05 

882.52 

889.42 

875.63 

813.58 

503.31 

282.68 

21.11 

537.77 

648.88 

732.22 

815.55 

926.66 

1037.78 

70 

1000 

1200 

1350 

1500 

1700 

1900 

𝜀�̇� =
�̇�𝑒

𝜎𝑒
(𝜎𝑟 − 𝜎𝜃)                                                            (5-1) 

𝜀�̇� =
�̇�𝑒

2𝜎𝑒
(𝜎𝜃 − 𝜎𝑟)                                                          (5-2) 

So it can be concluded: 

𝜀�̇� = −2𝜀�̇�      ⇒     𝜀�̇� + 𝜀�̇� + 𝜎𝜑 = 𝜀�̇� + 2𝜀�̇� = 0             (6) 

The equivalent stresses for spherical thick-walled spherical 

vessels are as Eq. (7) 

𝜎𝑒 =
1

√2
√(𝜎𝜃 − 𝜎𝑟)2 − (𝜎𝜃 − 𝜎𝜑)

2
− (𝜎𝜑 − 𝜎𝑟)2 = 𝜎𝜃 − 𝜎𝑟   (7) 

The equivalent creep rate can be obtained from the 

equivalence crustal deformation, that is, 

𝜎𝑒𝜀�̇� = 𝜎𝜃𝜀�̇� + 𝜎𝜑𝜀�̇� + 𝜎𝑟𝜀�̇�                                                      (8) 

Now, using the results of H. You and H. Ou, [6], we can 

find out that by putting B, n, as a variable value, no change in 

the whole Norton equation will occur and the values for the 

solution in a given answer are changed relative to each other. 

Finally, from their findings, it can be said that n and B are 

given numerically independent of the spherical vessels radius. 

Therefore, we have: 

𝜀�̇� = 𝐵𝜎𝑒
𝑛                                                                                (9)             

According to the test data from the University of Swansea, 

which is listed in Table 2, from 800 ° C to 950 ° C, the 

necessary specifications to obtain the n and B constants are 

minimum creep rate 𝜀�̇� and equivalent stress 𝜎𝑒. Now we have 

to linearize Norton's mathematical model so that we can be 

able to obtain the constant values of n and B for the test 

temperatures (800, 850, 900, 950 Celsius).  

The first step of linearization is getting log from Eq. (9). 

So, we can fit the values of stress and creep at any temperature, 

then a graph is depicted in terms of log-stress (MPa) versus 

log-strain rate (s-1), a linear is obtained as y = mx + c. The 

second step is to fit the opposite values instead of the constants 

B and n into m = n and c = log B. The linearity gradient line of 

the Norton equation in the spherical pressure vessel at 800-950 

°C illustrated in Figures 3-6. 
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Figure 3. The linearity gradient line of the Norton equation in the 

spherical pressure vessel at 800 °C 

 

Figure 4. The linearity gradient line of the Norton equation in the 

spherical pressure vessel at 850 °C 

 

Figure 5. The linearity gradient line of the Norton equation in the 

spherical pressure vessel at 900 °C 

 

Figure 6. The linearity gradient line of the Norton equation in the 

spherical pressure vessel at 950 °C 

From the Eq. (9) for Figures 3-6, line equation and 

coefficients B and n are shown in Table 6. 

Table 6. Line equation, coefficients B and n for Figures 3-6 

No. Figure       Line equation       Coefficient B          n 

3 

4 

5 

6 

y = 6.987x-26.676 

y=8.2507x-28.742 

y = 8.8107x-29.031 

y = 7.8169x-25.371 

10-26.676 

10-28.742 

10-29.031 

10-25.371 

6.9870 

8.2507 

8.8107 

7.8169 

After linearization and obtaining the required constant, we 

can obtain radial and circumferential stresses: 

𝜎𝑟 =
𝑝

𝑎−3 𝑛⁄ −𝑏−3 𝑛⁄ (𝑏−3 𝑛⁄ − 𝑟−3 𝑛⁄ )                                    (10) 

𝜎𝜃 =
𝑝

𝑎−3 𝑛⁄ −𝑏−3 𝑛⁄ (𝑏−3 𝑛⁄ +
3−2𝑛

2𝑛
𝑟−3 𝑛⁄ )                            (11) 

According to the relationships between Eqs. (10) and (11) 

and insert them in the Norton law or the Eq. (9), we can obtain 

the minimum strain rate, or the equivalent creep: 

𝜀�̇� = 𝐵[
3𝑝

2𝑛(𝑎−3 𝑛⁄ −𝑏−3 𝑛⁄ )
]𝑛𝑟−3                                             (12) 

By using the above relation, we can obtain the equivalent 

creep in all points of the spherical vessels radius Now, for 

autofrettage, the spherical vessels must be taken to plastic and 

the equations necessary to open up the result of the Norton 

equations, but which include both the elastic and the plastic, 

have to be developed.  

Regarding the hardening process, if the tensile stress 

reaches σ𝑒  during plastic deformation, the resulting tension is 

removed and reaches to a constant value of 2σ𝑦  as shown in 

Figure 7b. The strain-strain relation can be obtained with 

thermal stress coefficient (α), strain independent of heat and 

strain of plastic. The radial stress 𝜎𝑟  and the circumferential 

stress 𝜎𝜃 must satisfy the equation of equilibrium. 

As shown in Figure 7a, through autofrettage, part of vessel 

passes from the radius of rc into the plastic region, and from 

that radius to the outer radius remains in the elastic region. 

This creates a protective layer to withstand stress. As shown in 

Figure 7b, we can see the autofrettage that makes part of the 

spherical vessels radius change from the elastic region to the 

plastic and then we removed the applied stress to restore the 

amount of elastic strain and at the end of the process, we have 

remained stress that called residual stress. It can be seen that 

the yield stress in the autofrettage mode, is 2 times the amount 

of stress in the normal state. 

𝑑𝜎𝑟

𝑑𝑟
−

2

𝑟
(𝜎𝜃 − 𝜎𝑟) = 0                                                                        (13) 

The strains compatibility equation is: 

𝑑𝜀𝜃

𝑑𝑟
−

𝜀𝜃−𝜀𝑟

𝑟
= 0                                                                (14) 

The steady state temperature is determined through the 

symmetry of the spherical vessels as we have [28]: 

𝑇 = 𝑇𝑟0
+ (𝑇𝑟𝑖

− 𝑇𝑟0
)

𝑟0
𝑟⁄ −1

𝑟0
𝑟𝑖

⁄ −1
                                                     (15) 
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(a) 

 

(b) 

Figure 7. a) The Elastic and Plastic zones in the autofrettage 

spherical pressure vessel, b) The stress-strain curve considering the 

hardening process [28] 

This research assume that the temperature inside the vessel 

is equal to the outside of the spherical vessel, and then the 

above expression (15) is equal to: 

𝑇 = 𝑇𝑟0
= 𝑇𝑟𝑖

                                                                                         (16) 

On this basis, we have to measure Von Mises yield 

criterion: 

𝜎𝜃 − 𝜎𝑟 = 𝜎𝑦                                                                                         (17) 

For elastoplastic materials [28]: 

𝜎𝑒 = 𝜎𝑦 + 𝐸𝑝𝜀𝑒
𝑝
                                                                             (18) 

Eq. (18) shows that the equivalent stress is equal to the 

equivalent yield stress and the term of the plastic strain is 

added to the equation. In the following, by pasting the plastic 

term in the general formula of stresses, we can satisfy the 

equivalent stress equation [28]: 

𝐸𝑝 =
𝐸𝑡𝐸

𝐸−𝐸𝑡
                                                                                   (19) 

𝐸𝑡 is equal to the gradient of the plastic section curve in the 

stress-strain curve (Figure 7). 

𝜀𝑟
𝑝

=
1

𝐸𝑝
(𝜎𝑟 − 𝜎𝜃)                                                                       (20) 

𝜀𝜃
𝑝

=
1

2𝐸𝑝
(𝜎𝜃 − 𝜎𝑟)                                                                      (21) 

Generally, for radial strain and circumferential strain with 

respect to plastic strains we will have: 

𝜀𝑟 =
1

𝐸
(𝜎𝑟 + 2𝑣𝑒𝜎𝜃) + α𝑇 + 𝜀𝑟

𝑝
                                            (22) 

𝜀𝜃 =
1

𝐸
((1 − 𝑣𝑒)𝜎𝜃 + 𝑣𝑒𝜎𝑟) + α𝑇 + 𝜀𝜃

𝑝
                            (23) 

Clearly, 𝑣𝑒  is equivalent Poisson ratio and α is the thermal 

expansion coefficient. For the elastoplastic sphere area, the 

general radial and circumferential strains in terms of stresses 

are as follows:  

𝜀𝑟𝑎𝑢𝑡
=

1

𝐸
(𝜎𝑟 + 2𝑣𝑒𝜎𝜃) + α𝑇 +

1

𝐸𝑝
(𝜎𝑟 − 𝜎𝜃)                (24) 

𝜀𝜃𝑎𝑢𝑡
=

1

𝐸
((1 − 𝑣𝑒)𝜎𝜃 + 𝑣𝑒𝜎𝑟) + α𝑇 +

1

2𝐸𝑝
(𝜎𝜃 − 𝜎𝑟)  (25) 

The stress-strain relations for stresses can be written in 

terms of α thermal expansion coefficient: 

𝜎𝑟𝑎𝑢𝑡
=

𝐸

(1+𝑣𝑒)(1−2𝑣𝑒)
[(1 − 𝑣𝑒)(𝜀𝑟 − α𝑇 − 𝜀𝑟

𝑝
) + 2𝑣𝑒(𝜀𝜃 −

α𝑇 − 𝜀𝜃
𝑝

)]                                                                           (26) 

𝜎𝜃𝑎𝑢𝑡
=

𝐸

(1+𝑣𝑒)(1−2𝑣𝑒)
[(𝜀𝜃 − α𝑇 − 𝜀𝜃

𝑝
) + 𝑣𝑒(𝜀𝑟 − α𝑇 −

𝜀𝑟
𝑝

)]                                                                                     (27) 

To simplify the radial and circumferential stresses, we can 

use the quantities 𝜎𝑟
∗ and 𝜎𝜃

∗, which are the same as non-

dimensional values of radial and circumferential stresses. 

𝜎𝑟
∗ =

𝜎𝑟𝑛𝑜𝑟

𝜎𝑟𝑎𝑢𝑡

           .          𝜎𝜃
∗ =

𝜎𝜃𝑛𝑜𝑟

𝜎𝜃𝑎𝑢𝑡

                          (28) 

3. Results and Discussion  

To investigate the above-mentioned problem, at first, this 

spherical under pressure vessel should be checked in the 

normal and then in autofrettage state and the final creep with 

respect to stress-strain equations should be compared. 

Eventually obtained creep or Norton equation are compared in 

these two modes and the effects of autofrettage are 

investigated in the spherical vessel. To obtain this, we 

calculate the constant values of n and B, and then through 

creating relations (7) and (17) and inserting the material 

specification (tables. 2 and 3) in Eqs. (10), (11) and then (12) 

we can obtain the general creep in the non- autofrettage mode. 

Now, according to normal (non-autofrettage) part solution and 

obtaining the radial and circumferential stresses in the 

autofrettage mode, and also through obtaining the amount of 

EP from Et, we can calculate creep in the autofrettage mode 

from Norton relationship (7) and compare the results in both 

modes. The considerations have been in this paper. according 

to Table 3, the UTS amount at the maximum test temperature 

is 660 MPa, which is why we consider the critical pressure to 

be 600 MPa. Optionally we sorting pressure between 100 and 

600 MPa. Due to the fact at low pressures there is no 

appreciable creep change, further particle splitting will be 

measured at close to the critical pressure. For the better 

comparison, the variation of 𝜎𝑟
∗ and 𝜎𝜃

∗ in terms of r for several 

temperatures illustrated in Tables 7 and 8.  
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Table 7. The variation of 𝜎𝑟
∗ versus radius of the vessel for several 

temperatures 

      𝝈𝒓
∗                                      r (m) 

T (oC)     0.5         0.55        0.6       0.65         0.7         0.75        0.8 

800 

850 

900 

950 

0.790 

0.807 

0.813 

0.802 

0.597 

0.606 

0.610 

0.603 

0.437 

0.442 

0.444 

0.440 

0.302 

0.305 

0.306 

0.304 

0.187 

0.188 

0.189 

0.188 

0.0876 

0.0878 

0.0878 

0.0877 

0.00 

0.00 

0.00 

0.00 

Table 8. The variation of 𝜎𝜃
∗ versus radius of vessel for several 

temperatures 

      𝝈𝜽
∗                            r (m)                                 

T(oC)    0.5       0.55        0.6       0.65        0.7       0.75         0.8 

800 

850 

900 

950 

0.470 

0.449 

0.441 

0.456 

0.629 

0.623 

0.621 

0.625 

0.702 

0.700 

0.700 

0.701 

0.744 

0.744 

0.744 

0.744 

0.772 

0.772 

0.772 

0.772 

0.791 

0.791 

0.791 

0.791 

0.806 

0.806 

0.806 

0.806 

These results show, that the value of 𝜎𝑟
∗ by increasing r 

decrease, and at the external radius of vessel 𝜎𝑟
∗ equal to zero. 

Also, increasing temperature of the vessel from 800 to 950 oC, 

𝜎𝑟
∗ slight and modest changes. And the value of 𝜎𝜃

∗ by 

increasing r increase. Also, increasing temperature of vessel 

from 800 to 950 oC, 𝜎𝜃
∗ modest changes. 

To obtain creep in normal mode, according to the results, it 

is enough to obtain the material specification and considering 

Figures 3 to 6, (n; B) constant in Eq. (9). By putting these 

values into Eq. (12), which gives the creep equivalence with 

respect to the equivalent stress in the Von Mises criterion, the 

creep values at 100, 300, 400, 500, 525, 550, 575, and 600 at 

each test temperature are calculated and displayed. 

To compare the present research with previous studies, the 

ratio of the stresses (radial, circumferential or hoop, equivalent 

or effective) distribution and internal pressure versus R/Ri 

(r/ri) are illustrated in Figures 8 and 9.  

 
The ratio of the stresses distribution and internal pressure . Figure 8

ir/rversus  

 
The ratio of the stresses distribution and internal pressure . Figure 9

 iR/R versus 

Also, the value of the stresses (Figures 8 and 9) are shown 

in Table 10. According to Table 9, between the results of the 

present research and the reference [34], which is done with the 

ANSYS software, there is a good compatibility between the 

results.  

Table 9. The present work results and referenc [34], pressure 

equal to 70 Mpa, T=450 0C, 2.25 Cr-1 Mo Steel. 

R/Ri 

radial stress/ pi Equivalent stress 

/ pi 

Circumferential 

 stress/ pi 

Sorkhabi 
[34] 

Present 
 work 

Sorkhabi 
[34] 

Present 
 work 

Sorkhabi 
[34] 

Present 
 work 

1 

1.1 
1.2 

1.3 

1.4 
1.5 

1.6 

-1 

-0.7806 
-0.5880 

-0.4171 

-0.2639 
-0.1257 

0 

-1 

-0.7832 
-0.5917 

-0.4208 

-0.2670 
-0.1274 

0 

1.1746 

1.1276 
1.0863 

1.0496 

1.0168 
0.9872 

0.9603 

1.1573 

1.1179 
1.0831 

1.0520 

1.0241 
0.9987 

0.9755 

0.1746 

0.3469 
0.4983 

0.6326 

0.7529 
0.8615 

0.9603 

0.1573 

0.3347 
0.4914 

0.6312 

0.7571 
0.8713 

0.9755 

In the normal mode, which there is no process except the 

internal stress applied, creep is shown in Figures 10 to 13, 

which is observed as creep start in the descending order and in 

a non-linear manner from the inner wall, and then in a certain 

amount in the outer wall will be stopped. 

Figures 14 to 17 show the effect of the autofrettage process 

in a spherical vessel, which indicates the creep slope is more 

than the normal mode and from a specified radius, creep value 

has a sharp drop in autofrettage process. 

To investigate the creep graphs in the autofrettage thick-

walled spherical vessel, it is necessary to have the radial and 

circumferential stresses relations in the normal mode and by 

putting them in the autofrettage relations, we can calculate 

creep in the autofrettage pressure vessels.  

From Eqs. (18) to (24), and embedding in Eq.(17), we can 

obtain both the equivalent stress in the Von Mises criterion and 

the creep or Norton law graphs. In order to better comparison 

creep due to autofrettage process, it is better to compare the 

stress in both the normal and the autofrettage modes at the 

critical pressure to observe the effect of the autofrettage 

process on the maximum creep at the several test temperatures. 

Therefore, creep rates in the thick-walled spherical vessel in 

critical pressure of 600 Mpa for autofrettage and normal modes 

(non-autofrettage) are shown in Figures 18 and 19.  

Also, Maximum creep amounts in the normal and 

autofrettage thick-walled spherical vessels in critical pressure 

of 600 MPa with several temperatures illustrated in Tables 10 

and 11. According to Figures 18 and 19 show that the 

autofrettage process makes the creep curves converge at zero 

at the 0.7-meter radius, while in the normal mode, this happens 

at lower temperatures.  

Also, the creep values at several temperatures and 

pressures in the two modes of normal and autofrettage for 

thick-walled spherical vessel illustrated in Tables 12 and 13. 

As it was mentioned at the beginning of the article, data were 

obtained from experiments at the University of Swansea in 

England, where temperatures of 800 °C was initial and  950 °C 

was the final temperature for the operation. 

Table 10. Maximum creep amounts in the normal thick-walled 

spherical Vessel in critical pressure of 600 MPa with several 

temperatures 

T (C°)            800                850                 900               950 

𝜀�̇�             1.68*10-7           5.05*10-6            9.6*10-5          7.15*10-4 

Table 11. Maximum creep amounts in the autofrettage thick-walled 

spherical vessel in critical pressure of 600 MPa and several 

temperatures 

T (C°)            800                850                 900               950 

𝜀�̇�             2.50*10-8           6.0*10-7            1.0*10-5          9.0*10-5 
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Figure 10. The creep in the normal thick-walled spherical vessel at 

800°C 

 

Figure 11. The creep in the normal thick-walled spherical vessel at 

850°C 

 

Figure 12. The creep in the normal thick-walled spherical vessel at 

900°C 

 

Figure 13. The creep in the normal thick-walled spherical vessel at 

950°C 

 

Figure 14. The creep in the autofrettage thick-walled spherical 

vessel at 800°C 

 

Figure 15. The creep in the autofrettage thick-walled spherical 

vessel at 850 °C 

 

Figure 16. The creep in the autofrettage thick-walled spherical 

vessel at 900 °C 

 

Figure 17. The creep in the autofrettage thick-walled spherical 

vessel at 950 °C 
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Figure 18. The creep of the normal thick-walled spherical vessel in 

critical pressure of 600 Mpa 

 
Figure 19. The creep in the autofrettage thick-walled spherical 

vessel in critical pressure of 600 Mpa 

 

 

Table 12. The creep values at several temperatures and pressures in the normal vessel (Non-Autofrettage Vessel) 

Creep (1/s)                                                                                r(m)         

   T (°C)                  p (MPa)             0.5                     0.55                0.6                       0.65                 0.7                    0.75                   0.8 

800 

 

 

 

 

 

 

 

850 

 

 

 

 

 

 

 

900 

 

 

 

 

 

 

 

950 

 

100 

300 

400 

500 

525 

550 

575 

600 

100 

300 

400 

500 

525 

550 

575 

600 

100 

300 

400 

500 

525 

550 

575 

600 

100 

300 

400 

500 

525 

550 

575 

      600 

6.12E-13 

1.32E-09 

9.85E-09 

4.68E-08 

6.58E-08 

9.11E-08 

1.24E-07 

1.67E-07 

1.92E-12 

2.66E-08 

1.78E-07 

1.12E-06 

1.68E-06 

2.46E-06 

3.55E-06 

5.05E-06 

1.35E-11 

2.15E-07 

2.72E-06 

1.94E-05 

2.98E-05 

4.49E-05 

6.64E-05 

9.67E-05 

5.95E-10 

3.19E-06 

3.02E-05 

1.73E-04 

2.53E-04 

3.65E-04 

5.16E-04 

 7.20E-04 

4.60E-13 

9.91E-10 

7.40E-09 

3.52E-08 

4.95E-08 

6.85E-08 

9.34E-08 

1.26E-07 

1.44E-12 

1.25E-08 

1.34E-07 

8.43E-07 

1.26E-06 

1.85E-06 

2.67E-06 

3.79E-06 

1.01E-11 

1.62E-07 

2.04E-06 

1.46E-05 

2.24E-05 

3.37E-05 

4.99E-05 

7.26E-05 

4.47E-10 

2.40E-06 

2.27E-05 

1.30E-04 

1.90E-04 

2.74E-04 

3.88E-04 

5.41E-04 

3.54E-13 

7.64E-10 

5.70E-09 

2.71E-08 

3.81E-08 

5.27E-08 

7.20E-08 

9.69E-08 

1.11E-12 

9.59E-09 

1.03E-07 

6.49E-07 

9.71E-07 

1.43E-06 

2.06E-06 

2.99E-06 

7.79E-12 

1.25E-07 

1.57E-06 

1.12E-05 

1.73E-05 

2.60E-05 

3.85E-05 

5.59E-05 

3.44E-10 

1.85E-06 

1.75E-05 

1.00E-04 

1.47E-04 

2.11E-04 

2.99E-04  

4.17E-04 

2.79E-13 

6.01E-10 

4.48E-09 

2.13E-08 

3.00E-08 

4.15E-08 

5.66E-08 

7.62E-08 

8.73E-13 

7.55E-09 

8.10E-08 

5.11E-07 

7.64E-07 

1.12E-06 

1.62E-06 

2.30E-06 

6.13E-12 

9.80E-08 

1.24E-06 

8.83E-06 

1.36E-05 

2.04E-05 

3.02E-05 

4.40E-05 

2.71E-10 

1.45E-06 

1.38E-05 

7.88E-05 

1.15E-04 

1.66E-04 

2.35E-04 

3.28E-04 

2.23E-13 

4.81E-10 

3.59E-09 

1.71E-08 

2.40E-08 

3.32E-08 

4.53E-08 

6.10E-08 

6.99E-13 

6.04E-09 

6.49E-08 

4.09E-07 

6.11E-07 

8.98E-07 

1.30E-06 

1.84E-06 

4.91E-12 

7.85E-08 

9.90E-07 

7.07E-06 

1.09E-05 

1.64E-05 

2.42E-05 

3.52E-05 

2.17E-10 

1.16E-06 

1.10E-05 

6.31E-05 

9.24E-05 

1.33E-04 

1.88E-04 

 2.62E-04 

1.81E-13 

3.91E-10 

2.92E-09 

1.39E-08 

1.95E-08 

2.70E-08 

3.68E-08 

4.96E-08 

5.68E-13 

4.91E-09 

5.27E-08 

3.32E-07 

4.97E-07 

7.30E-07 

1.05E-06 

1.50E-06 

3.99E-12 

6.38E-08 

8.05E-07 

5.75E-06 

8.83E-06 

1.33E-05 

1.97E-05 

2.86E-05 

1.76E-10 

9.46E-07 

8.96E-06 

5.13E-05 

7.51E-04 

1.08E-04 

1.53E-04 

 2.13E-04 

1.49E-13 

3.22E-10 

2.40E-09 

1.14E-08 

1.61E-08 

2.23E-08 

3.04E-08 

4.09E-08 

4.68E-13 

4.05E-09 

4.35E-08 

2.74E-07 

4.10E-07 

6.01E-07 

8.68E-07 

1.23E-06 

3.29E-12 

5.26E-08 

6.63E-07 

4.74E-06 

7.28E-06 

1.10E-05 

1.62E-05 

2.36E-05 

1.45E-10 

7.79E-07 

7.38E-06 

4.23E-05 

6.19E-05 

8.90E-05 

1.26E-04  

1.76E-04 
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Table 13. The creep values at several temperatures and pressures in the normal vessel (Autofrettage Vessel) 
Creep (1/s)                                                                                   r(m)         

     T (°C)            p (MPa)                   0.5                   0.55                  0.6                    0.65                   0.7                   0.75                   0.8 

800 

 

 

 

 

 

 

 

850 

 

 

 

 

 

 

 

900 

 

 

 

 

 

 

 

950 

 

100 

300 

400 

500 

525 

550 

575 

600 

100 

300 

400 

500 

525 

550 

575 

600 

100 

300 

400 

500 

525 

550 

575 

600 

100 

300 

400 

500 

525 

550 

575 

      600 

9.05E-14 

1.95E-10 

1.46E-09 

6.92E-09 

9.74E-09 

1.35E-08 

1.84E-08 

2.48E-08 

2.17E-13 

1.88E-09 

2.01E-08 

1.27E-07 

1.90E-07 

2.79E-07 

4.02E-07 

5.71E-07 

1.35E-12 

2.17E-08 

2.73E-07 

1.96E-06 

3.00E-06 

4.42E-06 

6.70E-06 

9.72E-06 

7.38E-11 

3.95E-07 

3.75E-06 

2.15E-05 

3.14E-05 

4.52E-05 

6.40E-05 

  8.93E-05 

2.82E-14 

6.09E-11 

4.54E-10 

2.16E-09 

3.04E-09 

4.20E-09 

5.73E-09 

7.72E-09 

5.66E-14 

4.89E-10 

5.25E-09 

3.31E-08 

4.95E-08 

7.27E-08 

1.05E-07 

1.49E-07 

3.26E-13 

5.21E-09 

6.57E-08 

4.69E-07 

7.22E-07 

1.09E-06 

1.61E-06 

2.34E-06 

2.05E-11 

1.09E-07 

1.04E-06 

5.95E-06 

8.71E-06 

1.25E-05 

1.77E-05 

2.48E-05 

8.40E-15 

1.81E-11 

1.35E-10 

6.42E-10 

9.03E-10 

1.25E-09 

1.71E-09 

2.30E-09 

1.39E-14 

1.20E-10 

1.30E-09 

8.14E-09 

1.22E-08 

1.79E-08 

2.58E-08 

3.67E-08 

7.37E-14 

1.18E-09 

1.49E-08 

1.06E-07 

1.63E-07 

2.46E-07 

3.64E-07 

5.30E-07 

5.37E-12 

2.88E-08 

2.73E-07 

1.56E-06 

2.29E-06 

3.29E-06 

4.66E-06 

  6.50E-06 

2.32E-15 

5.00E-12 

3.73E-11 

1.78E-10 

2.50E-10 

3.45E-10 

4.71E-10 

6.34E-10 

3.14E-15 

2.71E-11 

2.91E-10 

1.83E-09 

2.74E-09 

4.03E-09 

5.81E-09 

8.25E-09 

1.52E-14 

2.42E-10 

3.06E-09 

2.18E-08 

3.36E-08 

5.60E-08 

7.48E-08 

1.09E-07 

1.30E-12 

6.96E-09 

6.60E-08 

3.78E-07 

5.53E-07 

7.95E-07 

1.13E-06 

1.57E-06 

5.75E-16 

1.24E-12 

9.25E-12 

4.40E-11 

6.18E-11 

8.56E-11 

1.17E-10 

1.57E-10 

6.20E-16 

5.36E-12 

5.75E-11 

3.63E-10 

5.43E-10 

7.96E-10 

1.15E-09 

1.63E-09 

2.72E-15 

4.34E-11 

5.48E-10 

3.91E-09 

6.01E-09 

9.05E-09 

1.34E-08 

1.95E-08 

2.77E-13 

1.49E-09 

1.41E-08 

8.07E-08 

1.18E-07 

1.70E-07 

2.41E-07 

3.36E-07 

1.21E-16 

2.61E-13 

1.95E-12 

9.28E-12 

1.31E-11 

1.81E-11 

2.46E-11 

3.32E-11 

1.02E-16 

8.79E-13 

9.43E-12 

5.95E-11 

8.89E-11 

1.31E-10 

1.88E-10 

3.68E-10 

3.98E-16 

6.36E-12 

8.02E-11 

5.73E-10 

8.81E-10 

1.33E-09 

1.96E-09 

2.86E-09 

4.96E-14 

2.67E-10 

2.52E-09 

1.44E-08 

2.11E-08 

3.04E-08 

4.30E-08 

6.00E-08 

2.01E-17 

4.34E-14 

3.24E-13 

1.54E-12 

2.17E-12 

3.00E-12 

4.09E-12 

5.50E-12 

1.26E-17 

1.09E-13 

1.17E-12 

7.36E-12 

1.10E-11 

1.62E-11 

2.33E-11 

3.31E-11 

4.32E-17 

6.91E-13 

8.72E-12 

6.23E-11 

9.57E-11 

1.44E-10 

2.13E-10 

3.10E-10 

6.78E-15 

3.64E-11 

3.45E-10 

1.98E-09 

2.90E-09 

4.16E-09 

5.89E-09 

  8.21E-09 

4. Conclusions 

Due to the nature of the creep, which is affected by the 

material, environmental and mechanical conditions, it can 

be concluded that by changing the type of processes, 

different results of the creep can be obtained.  

In the normal mode, which there is no process except 

the internal stress applied, creep is shown in Figures 10 to 

13, which is observed as creep start in the descending order 

and in a non-linear manner from the inner wall, and then in 

a certain amount in the outer wall will be stopped. The 

spherical vessel elasticity makes the creep slope in the 

diagram seems less in the far lower pressure. Now, through 

considering the autofrettage process applied, as well as 

maintaining the environmental and mechanical conditions 

like normal mode, we can examine the creep completely. 

According to the process of autofrettage, which causes 

a part of the elastic region to turn into the plastic one in 

spherical vessels, naturally, the amount of creep at any 

temperature and pressure should be less than the 

corresponding one in the non-autofrettage case. Because of 

entering the plastic zone and then removing the applied 

force, some amount of strain in the spherical vessels will 

remain, so the external force which is supplied by both 

internal pressure and temperature and by maintaining  

mechanical and thermal conditions like non-autofrettage 

state will not be able to produce a creep in accordance with 

non-autofrettage creep.  

Figures 14 to 17 show the effect of the autofrettage 

process in a spherical vessel, which indicates the creep slope 

is more than the normal mode and from a specified radius, 

creep value has a sharp drop in autofrettage process. 

According to the pressure 600 MPa, which is a critical 

pressure at 950 °C, and it applied at various temperatures 

and comparison normal and autofrettage modes with each 

other, it is shown in Figures 18 and 19, the equivalent creep 

in the entire pressure vessel which depends on the test 

temperatures decreases by at least 10 times.  

It can be concluded the temperature plays an important 

role in increasing the creep in the thick-walled spherical 

pressure vessel, in which with increasing temperature the 

curve slope will increase. According to Tables 12 and 13, it 

can be noticed at low pressures (such as 100 MPa), the creep 

amount is very low and whenever autofrettage mode 

applies, this amount will be even lower. Generally,  

Tables 12 and 13 show (in the same radius in both 

modes), the creep amount in the autofrettage mode is less 

10 times at an internal radius and less 105 times in the 

external radius than normal mode. It is also possible to 

examine the effect of temperature on the creep in the 

respective radius .it can be observed in the Tables 12 and 13 

the creep exact amount according to the temperature factors 

and pressure in two cases of autofrettage and normal modes.  

Finally, it can be concluded applying the autofrettage 

process in nickel super-alloyed thick-walled spherical 

pressure vessel, not only it reduces the creep amount by at 
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least 10 times the internal radius, but we can fix this amount 

at a certain radius and even it can be much less than normal 

mode at the same radius. By comparing creep values in the 

normal mode with the creep value after applying 

autofrettage, we can observe that the autofrettage of 

spherical vessels is a very practical process in the 

prevention and immunization of thick-walled spherical 

vessels, so that it can control or eliminate destructive actions 

such as creep.  

According to Table 9, between the results of the present 

research and the reference [34], which is done with the 

ANSYS software, there is a good compatibility between the 

results.  
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